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We show that in the case of a dilute gas of neutral particles kinetic equations for 
autocorrelation functions such as 

(f(r, v, 0f(V, v', t')), where f(r, v, t) = Y'~z ~(r -- re(t)) ~(v -- v~(tt)), 

can be obtained in a very simple manner by the use of the truncated BBGKY hierarchy. 
The resulting equations correspond to the low-density limit of the results of van Leeuwen 
and Yip. Moreover, the derivation does not make use of the Bogoliubov adiabatic 
approximation, and therefore includes non-Markovian effects which can be important 
in describing light scattering from gases and the collisional narrowing of atomic dipole 
radiation. The resulting equations in the long-wavelength limit correspond to the non- 
Markovian Boltzmann equation for the self-correlation part and the non-Markovian, 
linearized Boltzmann equation for the total autocorrelation function. 

KEY W O R D S :  Kinetic equations; autocorrelation ; light scattering; BBGKY hierarchy; 
non-Harkovian; Liouville equation; Boltzmann equation, 

1. I N T R O D U C T I O N  

In  recent  years, there has  been considerable  interest  in the use o f  techniques such 
as l ight  scattering, slow neu t ron  scattering, and  spectral  line shapes to  invest igate  
the kinetic  proper t ies  o f  neut ra l  and  ionized gases. These techniques all have the 
c o m m o n  p rope r ty  o f  p rob ing  certain au tocor re la t ion  funct ions in the system. In  the 
case o f  neut ron  and  l ight scattering,  (1) the quant i ty  o f  interest  is the densi ty au tocor re -  

la t ion  funct ion 

(fi(r, t ) f i (r ' ,  t ' ) )  = ~ (3(r  - -  r i( t))  ~(r' - -  r i ( t ' ) ) )  
i , j  
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where r~(t) is the position of the ith particle at time t. In the case of atomic line shapes, 
the quantity of interest is (d(r, t) �9 d(r', t ')), where d(r, t) is the dipole current density 
at the point r and time t. In certain cases, this quantity is proportional to the density 
autocorrelation function. (2) 

Since autocorrelation functions are of great interest, several authors, (3-m have 
developed kinetic equations for these quantities. In particular, Rostoker, (5) Klimon- 
tovich, (6) and Dupree (v) have developed rather general techniques for calculating 
such quantities for plasmas. In the neutral-gas case, Van Leeuwen and Yip (8) and 
Blum and Lebowitz (9) have considered the problem in equilibrium systems. As 
Montgomery (z~ recently pointed out, the methods used for the neutral-gas case are 
quite different from those used for the plasma and are in many ways much more 
complex and much less physically obvious then in the plasma case. 

Montgomery used an approach very similar to that developed by Rostoker for 
the plasma case. In addition, he made use of the multitime method. (~2) The problem 
with this latter technique is that it does not include non-Markovian effects, which can 
be important for the scattering or emission of light having frequencies greater than the 
inverse of the duration of a collision. 

The purpose of this paper is to show that there is a very simple way to obtain the 
results for a homogeneous, dilute gas of natural atoms in the low-density limit which, 
although similar in spirit to Montgomery's approach, does include non-Markovian 
effects. This method is based on the methods used in the plasma case by Rostoker, 
Klimontovich, and Dupree. Moreover, we believe (as Montgomery emphasized) that 
these methods offer a much simpler approach to the problem than those of Refs. 8 
and 9. This method may also have an additional advantage of being easily generalized 
to treat nonequilibrium systems if such systems ever become of interest. This treatment 
is presently somewhat restricted (as was that of Montgomery) in that it is very hard to 
account for initial correlation effects and triple and higher-order collisions. Thus, 
it is, perhaps, somewhat less appropriate for dense gases. 

2. T H E  BBGKY E Q U A T I O N S  FOR A U T O C O R R E L A T I O N  F U N C T I O N S  

We are interested in autocorrelation functions of the form (A(x,  t) A(x' ,  t ')), 
where A(x,  t) is a single-particle observable 

N 

A(x,  t) = ~ al ~(x -- xi(t)) (1) 

and x ---- (r, v), ~(x -- xi(t)) = 3(r -- ri(t)) ~(v -- vi(t)). The quantities ri(t) and vi(t) 
are the exact position and velocity of the ith particle at time t. Any autocorrelation 
function of this form can be written in terms of the quantity (al) 

f ( x ,  t; x', t') = n - x ( f ( x ,  t) f ( x ' ,  t ')) (2) 

where n is the particle density and 
N 

f ( x ,  t) ---- ~ 8(x -- xi(t)) (3) 
i = 1  

is the exact, one-particle distribution function. 
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In some cases, one is not interested in f (x ,  t; x', t ') itself but in only a part of it. 
For  example, in the problem of collisional narrowing of spectral lines, (2) the quantity 
of interest is 

W~a(x, r; x', t') = n-~ ( ~ 8(x -- x~(t)) 8(x' -- x~(t'))) 

= v ( a ( x  - x~(t)) a(x' - x z ( r ) ) )  ( 4 )  

It is therefore useful to decompose the quantity f as 

f (x ,  t; x', t') = Wnz(x, r; x', t') +/'/WI,,,(X , 7"; X t, t') (5) 

where 

w l , ~ ( x ,  ~'; x ' ,  t ' )  = ~ - x , ( t ) )  ~ (x '  - x~( t ' ) )  

= V 2 <8(x -- xl(t)) a(x' --  x~(t'))> (6) 

Wla and W~.2 are the same as those introduced by Rostoker. ~Sa~ The quantities 
This decomposition is not, however, the same as that used by van Leeuwen and Yip ~8) 
whose expression also involved a decomposition of the Liouville time-evolution 
operator exp(--iLNz). 

I f  we introduce a modified N-particle distribution function 

FN(FN, r;  X', t ') = exp (--iLNr) 8(x' --  xl)fN(Fn) (7) 

where fN(F•) is the usual N-particle distribution function and LN is the Liouville 
operator, we can show that Wz.1 and W1.2 are one-particle reduced distribution func- 
tions related to FN as 

t') = V f "." f dx2"'" dxx rn(1, 2, 3,..., N, r; x', t') (8) W l , l ( x l  , T; X',  

W1,2(X1 , 7"; X t, t ' )  = V ~ f "'" f d x  2 "'" d x  N FN(2, 1, 3 ..... N; x', t ') (9) 

and 

We note that, although Fzr obeys the Liouville equation as a function of the 6N 
coordinates ri and vi,  it is not symmetric under the interchange 1 ~-+ i, but is symmetric 
under i r j, if  i, j :7~ I. The quantity W~a(x, z; x', t ') is the joint probability density 
that a particle is at phase point x'  at time t' and then at the point x a time z later. On 
the other hand, the quantity Wz,2(x, z; x', t') is the joint probability density that a 
particle is at x' at time t '  and another particle is at point x a time z later. We will 
choose to work with an equilibrium system, in which case there is no t '  dependence. 
The following results can, however, be easily generalized to treat nonequilibrium 
systems. 

From the equation of motion for FN, which is 

OFN/~r q- iLNFn = 0 (10) 
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we obtain in the usual manner of the BBGKY method (~  or by the method of 
Klimontovich (6) and Dupree (7) the equations 

2 Wl.l(1, .) -- -iLz~ W~.l(l, ~) - in ~ dx~ L;(1, 2) Wl,a(1, 2, ~) (lO 87- 

and 

where 

and 

L Wa,e(1, ~') = --iLl~ Wa,~(1, T) -- i f dxz L~'(1, 2) Was 1(2, 1, -r) 8-r 

- - in  f dx2L2'(1 ,  2) Wlz.2(l, 2, r) 

Li~ ~ --iv1-8/Srl 

(12) 

(13) 

W12,I(X , X tt, "r; X', t ')  =- V2(~(x  - -  xi(t)) ~(x" - -  x2(t)) 3(x' -- xx( t ' ) ) )  (15) 

and 

" ' t") ~ V3(S(x  - -  xz( t))  3(x" - -  Xa(t)) 3(x' -- x~(t ' ) ) )  (16) W13,2(x, x ,  ~; x ,  

They can also be written as 

W121(1, 2, z) = V ~ f ... f dx  a ... dxNFN(1,  2, 3 ..... N,  , ;  x ' ,  t ' )  (17) 

and 

W12.3(1, 2, -r) = V 3 f ... f dxa "'" dxNFN(3,  1, 2, 4 ..... N ,  T; X', t ' )  (18) 

We will temporarily suppress the x' dependence in these functions. 
Equations (11) and (12) represent the first equations of a BBGKY hierarchy 

which is obtained from Eq. (I0) in the usual manner. This hierarchy differs from the 
usual one in the lack of complete symmetry of FN under interchange of particles. 
We can, of course, obtain equations for W~.~ and Wlz.2 in terms of three-body distri- 
bution functions. The equation for Wz2.~ is given by 

8--; W m ( l '  2, -) = --iL~(1, 2) W12.1(1, 2, ,)  

- - in  f dx3 L2'(1, 3) W123,1(1 , 2, 3, ~-) 

- - in  f dx3 L2'(2, 3) W12a,z(1, 2, 3, r) (19) 

The quantities W12.z and Wlz,2 are two-particle distribution functions defined by 

L2 ' (1 ,2 )~  i 8 ( 8  8 ) (14) m 8ri ~ ( r l - - r~ ) -  ~1  8v2 
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where 

L~(1, 2) = La~ -}- Lz~ + L2'(1, 2) (20) 

and 

W l ~ a ( x ,  x ", x ' ,  ~'; x ' ,  t ')  = V3(3(x  --  x l ( t ) )  3(x" --  x~(t)) 3(x" --  x~(t)) 3(x' - -  Xl(t'))) 

(21) 

A similar equation exists for W13,~.. At this point, we will restrict ourselves to two-body 
collisions and work to lowest order in the density. In that case, we can ignore the last 
two terms of Eq. (19), thereby truncating the hierarchy and giving ~1~ 

0 
8--~ W12a(l' 2, r) = --iL2(1, 2) WI~.Z(I, 2, ~-) (22) 

which is the two-body Liouville equation. In a similar manner, we find 

a 
c~'~ Wle'a(l' 2, ~-) ----- -- iLz(1,  2) Wx2,a(1, 2, ~') (23) 

It is convenient at this point to introduce a Fourier transform with respect to 
the suppressed variable r'. We define 

~rl.l(X1 , 'r; k, Y') = f dr '  (exp ik .  r') Wl,a(x l ,  ~'; r', v') (24) 

with a similar definition for WL~. The scattering cross sections and line shapes are 
all expressed in terms of a Fourier transform of W~,x and W1,2 with respect to both 
position variables, cl,2) 

We next introduce correlation functions corresponding to l~u.z(1, 2, ~-) and 
lYl~,a(1, 2, ~) which have the property that they vanish when 11,1 -- r~ l --+ ce. In 
the case of an equilibrium system, we have (see the appendix) 

I~l~a(1, 2, ~-; x', t') = r I~'za(1, ~-) + G2(1, 2, r) (25) 

and 

I~x2.,(1, 2, z; x', t') = r I~l.e(2, r) + r IYl.2(1, ~-) +/t~.(1, 2, r) (26) 

where we have assumed that k ~ 0. The quantity r is the usual Maxwell- 
Boltzmann,distribution function. If the system is not  in equilibrium, r is replaced 
by ~1(1, t '  + ~-), which obeys the Boltzmann equation to the order of density we are 
concerned with here. The quantities ~2 a n d / ~  are two-particle correlation functions. 

From Eqs. (22) and (23), we obtain, to lowest order in density, the equations 

~ ( r )  = --iL~'(.1, 2) ~z -- iL~'(1, 2) ~ba(2) l~la(1, T) (27) 



W. R. Chappell 272 

and 

8__ 17120. ) = _iL2(1 ' 2t/42(-) -- iL~'(1, 2)[42(1 ) W z  3(2, 7-t + 42(21 ff'~ 2(1, ~-)1 (28) ~ -  �9 , 

For nonzero k, which are the cases of interest, we also have 

__8 l~a ~(1, ~-) = -- iLz~ WI,I(I, 7") - -  i n  f dx2 L2'(1, 2) ~u(1, 2, 7") (29) 
~7" , 

and 

---~ ff~a 2(1, 7") ---- -- iL~~ ~ 2(1, 7") -- i f dxz L2'(1, 2) ~2(2, 1, 7-) 

- -  in f d x  2 L~'(1, 2)/~2(1, 2, ~-) (30) 

3. K I N E T I C  E Q U A T I O N S  FOR W,,, 

Since Eqs. (27) and (28) form a closed set for W1, ~ and G2, we begin by obtaining 
a kinetic equation for Win.  We can solve Eq. (27) formally as 

~ (1 ,  2, z) = exp (--iL2~') ~2(0) 

-- i  f "  d7-z exp [--iL2('r -- Tz) ] L2'(1 , 2) 1~1.1(1 , ~'1) 41(2) (31) 
~t D 

We shall assume henceforth that there are no initial correlations between the particles. 
Consequently, the first term in Eq. (31) vanishes. (The initial correlations give rise to 
the Enskog correction, which can be important for  dense systems.) If  we then define 
the operator 

S2(t) = exp (--iL2t) exp (iL2~ (32) 

where 

L2 ~ = Lz~ -I- Lz~ 

and substitute the resulting expression into Eq. (29), we obtain 

(33) 

f ~-~ Wa.l(r) -}- iLl~ Wz.z(r) = -- in dx~ drz L~'(1, 2) 
0 

eS~(rz) exp (--iL2%~) 4(2) I ~  a(1, r -- -q) (34) • ---e-gT~l 

It is next convenient to introduce a Fourier transform of Win(l, r) with respect 
to the remaining position vector. We define 

Wla(k, vl ,  ~') ----- f drx exp ( - - ik .  ra) 1~1.1(rl, vl ,  ~-) (35) 
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From Eq. (34), we then obtain 

e-~ W~a(k' Vx, ~') + i k .  va Waa(k , v~, -r) 

* ~S2(r0 k, 0 )  = --i,, f fo,crl (k,O[L;Cl, 2)-W-exp( 
• ~bz(v2) Win(k, Vl, r -- rl) (36) 

where the Dirac-like notation follows that introduced by van Leeuwen and Yip, (s> 

(kz, k2 [ A(I, 2)l kz', ks'> 

= O / v )  f at1 f ar2 z (exp - - ikl  "rl exp - - ik2 .  r~) A(1, 2) exp ik ;  �9 r~ exp ik ;  �9 r. 
(37) 

From Eq. (36), we see that the kinetic equation has the form 

L W~ 1 -/- i k .  vzW~a = f~ dr~ M(k, ~'0exp ( - - i k .  vlrz) Wla(k, vz, r --  ~'1) (38) 
~-r " 0 

where 

M(k, r ~ ) :  --in f dv~ (k ,  0 1L~'(1, 2) ~S~(~-~) k, O) 5bz(v~) (39) 

Equation (39) reduces to the result obtained by Blum and Lebowitz if the system is in 
equilibrium and there are no initial correlations. Equation (39) is essentially the non- 
Markovian Boltzmann equation. The kernel M(k, r 0  vanishes if ~-~ is much larger than 
the duration of a collision. Consequently, if there is a large separation between the 
duration of  a collision and the time between collisions, we can approximate 
exp (-- ik �9 vz~-l) W~a(r -- ra) by W~a(~') over the range for which the kernel is not 
zero. Furthermore, if ~- is large compared to the duration of  a collision, we can write 

_e 
Vl, (40) W~a(k, 

Or 

This equation differs from the Markovian form obtained by Blum and Lebowitz 
because we absorbed the exp - - ik  .vzr factor into Wla .  This is necessary because 
Wm(r ) varies as exp -- ik  �9 vzr even for ~r of the order of  the duration of a collision 
r a . This time dependence is significant unless kvor a ~ l, where vo is a typical velocity. 

If  we do assume that the wavelength is large compared to the range of the potential, 
so that kvor a ~ 1, we can approximate M(k, rz) by M(0, "r, r). We then can write the 
kinetic equation in the form 

~---~ Wl , l (k  , Vl ,  -r) -~- i k "  y l W l , l ( k ,  Yl ,  -r) 

f av~. L2'(1, 2) S~(oo) q51(v~) W~a(k , vz, r) (41) 
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The right-hand side of Eq. (41) is simply the Boltzmann collision integral, a4~ That is, 
if we denote the usual Boltzmann collision integral by J[r ~(2)], then the equation 
for W1,1 is 

I, V1 l(k, vl ,  ~) + i k .  vl W1 l(k, va, ~') --= J[ }//1 ~(k, vl ,  ~-) ~l(vs)] (42) ~./- , , . 

If the system is not in equilibrium, we must simultaneously solve the Boltzmann equa- 
tion for 4'1 as well. 

4. K I N E T I C  E Q U A T I O N  FOR Wl, z : .  

Equations (27)-(29) form a coupled set of equations for H2, 02 ,  and ff'1.2~ 
We Solve Eq. (28) formally as 

/ /12(~') = exp (--iL2r) I712(0) -- i d~- 1 exp (--iL2~'O L2'(1, 2) 
0 

• [r 1~1.z(2, ~- -- r 0 + r l~l.z(1, ~- -- ~'0] (43) 

If we then substitute this expression for/12 and the expression for ~z given in Eq, (31) 
into Eq. (30) for/'V1.2, we obtain 

2_ "0 = - iLl~ 
O'r 

f dx, f]  d'q L2'(1, 2) 0S~(~'1)exp (--iL2%'0 r I~1 x(1, ~" "/'1) C9rl 

-- in f dxs f:  d~" ! L2'(1, 2 ) ~  e x p  ( - - i L 2 0 ~ ' 1 )  

x [r ffzl.2(2, r -- rl) + r r " r0]  (44) 

where we have again ignored the effects of initial correlations. 
We can then combine Eqs. (34) and (44) to obtain the following equation for: 

/ : =  ,,g/1., + n2Wl.  : 

-~r " + iLl~ -- in f dx2 Le'(l' 2) f l  d'q OS~('rOOrl 

• exp (--iL2~ - ~'1; k, v') + Ca(1)f(x2, �9 - ~-~; k, v')] 
(45) 

If the system is in equilibrium, the above equation is the non-Markovian, linearized 
Boltzmann equation. We can put the above equation into a form similar to that  
obtained by Van Leeuwen and Yip ~s) by defining the quantity 

f (k ,  v l ,  ~-; v') ---- f dr exp ( - - ik -  r ) f ( x l ,  "r; k, v') 

= : f  dr f dr' exp [ik - (r - r ' ) ] f ( x l ,  t; x') (46) 
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We then find that 

~ f ( k ,  vl ,  ~-) + ik �9 vlf(k, vz, r) 

= - - i n f d v 2 f l d ' r z [ < k , O  L z ' ( 1 , 2 ) ~ e x p ( - - i L 2 % ' z ) k , O >  

• f (k ,  vl ,  ~" -- ~'1) till(v2) 

0S2(T1) 
+ (k, 0 1L~'(1, 2) ~ exp (--iL2~ I 0, k>f(k ,  v2, r -- ~-0 Cz(v0] (47) 

If  the system is in equilibrium, this is the equation obtained by van Leeuwen and 
Yip (s) and Blum and Lebowitz (9) (neglecting initial correlation). If  ~ >~ ~-a (the dura- 
tion of a collision) and if the duration of a collision is small compared to the time 
between collisions, we obtain the Markovian equation 

~ f ( k ,  vl ,  ~-) + vzf(k, vl ,  z) i k .  

= f d v 2 [ M ~ ( k , z , t ' ) f ( k , v ~ , ' r ) +  M2(k , z , t ' ) f ( k l ,%, ' c ) ]  (48) 

where 

and 

f ~ ~$2(71 ) MzOc, T, t') = --in ritz <k, 0 t L((1,  2) ---~r-~-- I k, O> Cz(v~) 
0 

(49) 

f ~ 0S~(~'0 
Ms(k , r, t') : --in dr 1 <k, 0 [ L2'(I, 2) ~ [ O, k> r (50) 

0 

Again these equations differ from the Markovian limit used by Blum and Lebowitz 19) 
because we have absorbed factors of the form exp -- ik  �9 vrz as in the last section. 

In the long-wavelength limit, kvoza ~ l, we can set k = 0, in which case we 
Obtain 

( ~ + i k ' v l )  f (k ,  vz, T) 

= --//7 f dv 2 Z2'(1 , 2) Sz(zt3)[~x(g2)f(k , v1, ~-) -~- ~l(v1)f(k, v2,7-)] (5i) 

In the case of thermodynamic equilibrium, this equation reduces to the linearized 
Boltzmann equation 

~ + ik-  v~ f (k,  vl ,  ~-) = J[r  vl ,  ,9 + r v~, .)]  (52) 

Which is the result obtained in Refs. 8 and 9. 

5. D ISCUSSION 

We have used the BBGKY method to obtain kinetic equations for autocorrela- 
tion functions for a dilute gas of  neutral particles. These results can easily be extended 
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to nonequilibrium gases. The basic philosophy of this approach is quite similar to that 
used by Montgomery. c~~ The method of solution is somewhat different and offers 
some advantages in that it allows us to account for non-Markovian effects. On the 
other hand, both methods suffer from the difficulty of being hard pressed to account 
for initial correlations (the Enskog approximation) which are important for dense 
gases. 

In the Markovian limit, the self-part, W m , can be reduced to the Boltzmann 
equation in the low-density limit. On the other hand, Wa,2 obeys the linearized Boltz- 
mann equation. These results have been previously obtained by other authors c8.9~ 
by the use of considerably more complicated methods. It is important to note, how- 
ever, that van Leeuwen and Yip ~SJ did not decompose the autocorrelation function 
in this way (although they mention the result for W~,z in their discussion). This is 
the reason Montgomery <1~ was unable to verify completely some of their results. 

A P P E N D I X  

We can obtain the correlation functions corresponding to W12,1 and W13,2 by 
the use of a method introduced by Dupree. c7) If  we define f~(x, t) = 8(x --  x~(t)) and 
its fluctuation from the average by 

3f~(x, t) = f i (x ,  t) -- V-~r (53) 

we can write Wl~a and W1~,2 as 

w~2,~(x, x", ~; x')  = - v-l~l(V) ~(v") ~(v') + Wla(X, 7; x') ~l(v") 
-~- V--I~I(V ') g2(x, X tt) -Ill- V-1W1,2(x tt, 7; x t) ~l(V) 

§ V~(Sf~(x, t) 3f2(x", t) ~f~(x', t ' ) )  (54) 

where g2 is the usual two-body correlation function. 
In the limit V -+ ov and N--+ 0% the first, third, and fourth terms on the right- 

hand side of the above equation vanish, leaving us with 

w12,~(x, x", ~; x') = Wl,~(x, .~; x') ~l(V") + ~m v(~fl(x,  t) ~j~x", t) ~/l(X', t ')) (55) 

In a similar way', we can show that in the infinite-volume limit 

W13,2(X , ~Tn, Y; .~t) = ~l(V) ~l(V tt) ~l(V t) + ml,2(x , T; X t) ~l(V n) -~- ml,2(x n, 7; x t) ~)l(v) 

§ ~l(v') g2(x, x") + lim V3~Sfl(X, t) 3f2(x", t) 3f3(x',t ')) (56) V-~ 

When t = t', the last term of Eq. (55) is proportional to the two-particle correlation 
function g2 and the last term of Eq. (56) is related to the three-particle correlation 
function g~. 
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